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The linear stability and subsequent nonlinear evolution and acoustic radiation of a 
planar inviscid compressible vortex is examined. Linear-stability analysis shows that 
vortices with smoother vorticity profiles than the Rankine vortex considered by 
Broadbent & Moore (1979) are also unstable. However, only neutrally stable waves are 
found for a Gaussian vorticity profile. The effects of entropy gradient are investigated 
and for the particular entropy profile chosen, positive average entropy gradient in the 
vortex core is destabilizing while the opposite is true for negative average entropy 
gradient. 

The linear initial-value problem is studied by finite-difference methods. It is found 
that these methods are capable of accurately computing the frequencies and weak 
growth rates of the normal modes. When the initial condition consists of random 
perturbations, the long-time behaviour is found to correspond to the most unstable 
normal mode in all cases. In particular, the Gaussian vortex has no algebraically 
growing modes. This procedure also reveals the existence of weakly decaying and 
neutrally stable waves rotating in the direction opposite to the vortex core, which were 
not observed previously. 

The nonlinear development of an elliptic-mode perturbation is studied by numerical 
solution of the Euler equations. The vortex elongates and forms shocklets ; eventually, 
the core splits into two corotating vortices. The individual vortices then gradually 
move away from each other while their rate of rotation about their mid-point slowly 
decreases. The acoustic flux reaches a maximum at the time of fission and decreases as 
the vortices move apart. 

1. Introduction 
Relatively little is known about the structure and behaviour of vortices when 

compressibility effects become important. This has recently prompted a number of 
investigations of isolated compressible vortices. For example Mandella (1987) 
measured profiles of velocity, pressure, etc. in a vortex (assumed to be axisymmetric) 
generated by a shock wave exiting a shock tube. Colonius, Lele & Moin (1991) used 
analysis and numerical computation to study the time-dependent effects of viscous 
spreading and heat conduction on an axisymmetric vortex. 

The focus of the present work is the behaviour of two-dimensional perturbations 
superimposed on an axisymmetric vortex with the motion assumed to be non- 
dissipative. For instance, an elliptic perturbation is provided by a shock wave passing 
over an axisymmetric vortex in the laboratory (Dosanjh & Weeks 1965). 
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Two mechanisms are known for two-dimensional instabilities of compressible 
vortices. (Incompressible mechanisms such as rollup of an annular vorticity 
concentration can also occur, modified by the effects of compressibility. However, we 
do not consider such vorticity distributions here.) The first mechanism, which will not 
be considered in detail here, is that if radially displaced fluid parcels change density 
adiabatically, then the centrifugal force induces a buoyancy-like effect for a non- 
homentropic basic state. There are a number of stability conditions (see the appendix 
in Hultgren 1988 for a synopsis) in which this effect is represented. These stability 
conditions can be limited to the hornentropic case and one sees (from Hultgren’s 
equation (A 1)) that the sufficient condition for stability to two-dimensional 
disturbances is violated in an irrotational region or for a Gaussian vorticity at 
sufficiently large radius. Similarly, Ripa (1 987) obtained sufficient conditions for 
stability of shallow-water vortices which are analogous to homentropic gasdynamic 
vortices with specific heat ratio y = 2. For a uniform-vorticity core surrounded by 
irrotational flow (Rankine vortex), it is possible to prove stability when the Mach 
number and the radius are below certain values but the conditions can always be 
violated for a given Mach number at sufficiently large radii. This implies stability for 
a confined vortex with sufficiently small ratio of container to vortex radius. 

The second mechanism for instability, which is the main concern of this work, is 
related directly to acoustics. Over a century ago, Kelvin (1880) showed that an 
incompressible unbounded Rankine vortex could support a spectrum of neutrally 
stable modes. With the addition of slight compressibility (i.e. at smaIl Mach numbers) 
these modes radiate sound (Broadbent 1976), the elliptic mode being the most efficient. 
One might be tempted to think that acoustic loss of energy from the system should 
cause perturbations to decay. However, the linear stability analysis of Broadbent & 
Moore (1979), valid for arbitrary Mach number, showed that the modes are in fact 
destabilized by compressibility. One simple way to understand the instability, due to 
Kop’ev & Leont’ev (1983, 1988), is to recognize that the incompressible Rankine 
vortex with uniform density maximizes energy relative to neighbouring isovortical 
states: the more the vortex is perturbed the less its energy. The perturbations are said 
to have ‘negative disturbance energy’. Hence perturbations cannot grow or decay 
without an external sink or source of energy and this accounts for neutral stability of 
the vortex (Hayashi & Young 1987). However, with the addition of slight 
compressibility, loss of energy by acoustic radiation allows perturbations to grow. The 
idea has been used by ZeitIin (1991) to predict the exact nonlinear growth, at low Mach 
number, in the vortex shapes of a class of exact solutions to the Euler equations having 
cycloidal particle paths. In these solutions, the vorticity need not be uniform and 
deviation from circular symmetry can be large. Because the rate of energy loss by 
acoustic radiation is an inefficient process, growth rates for this instability mechanism 
are necessarily small compared to inertial timescales. 

A very similar instability mechanism has been studied in geophysical contexts 
(Hayashi & Young 1987) where a mode with negative disturbance energy can resonate 
and transfer energy to a mode of positive disturbance energy so that both grow. For 
the compressible vortex, this suggests that instability can result not only from acoustic 
radiation but also from transfer of energy to a confined acoustic component, for 
instance, for a vortex surrounded by a rigid enclosure. Sozou (1969a, b) and Sozou & 
Swithenbank (1969) have reported on the existence of various types of neutral modes 
for a Rankine vortex in a cylindrical enclosure. Transfer of energy to an acoustic 
component and hence instability may become possible at larger cylinder radii than 
considered in their paper. 
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Broadbent (1984) considered the linear stability of a smoother two-core vortex 
consisting of an inner core with solid-body rotation, an outer core with a power law 
circumferential velocity and potential flow in the unbounded region outside the vortex. 
For the same Mach number at the vortical core boundary Mu, the two-core vortex is 
slightly more unstable than the Rankine vortex. If the two-core vortex is compared 
with a Rankine vortex of the same circulation, then the growth rate of the two-core 
vortex increases more rapidly with M,. 

Broadbent (1984) and Sozou (1987 a) found that three-dimensional waves on the 
unbounded Rankine vortex are less unstable. Indeed, sufficiently short waves are 
stable, depending on the maximum Mach number M. Sozou (19876) also found that 
for each azimuthal mode m 2 1 and M ,  there is an infinite spectrum of unstable waves 
and that the wave considered by Broadbent & Moore (1979) is the first mode of the 
spectrum when the axial wave number tends to zero. For the case where the gas is 
rotating sufficiently fast such that a vacuum funnel exists at the centre of the vortex, 
Sozou & Wilkinson (1989) found both stable and unstable waves depending on m, M 
and the axial wavenumber. 

This work has three parts. In the first part we study the linear stability of 
compressible vortices with smoother vorticity distributions than the Rankine vortex. 
Moore & Saffman (1973) showed how a smooth vorticity distribution arises from 
vortex sheet rollup; however, Dritschel (1988) showed that in the presence of strain, 
weak vorticity near the edge of the vortex core could be convected away and vorticity 
gradients sharpened. Since all analyses to date have assumed homentropic flow, we 
also study the effect of entropy gradient on the linear stability. 

The second part of the project involves a numerical study of the linear initial-value 
problem. Finite-difference methods are frequently used in flow simulation programs 
such as ARC2D (Pulliam 1986a). These methods are less accurate than spectral 
methods, but are better able to accommodate arbitrary geometries. One of the main 
concerns of the present work is to investigate to what degree commonly employed 
finite-difference numerical techniques are able, and what enhancements are required, to 
accurately compute the sensitive instabilities in the vortex flows mentioned above. 
These numerical methods are then used to compute the linear and nonlinear behaviour 
of the flow. A further objective is to investigate the long-time behaviour of random 
perturbations which will reveal the least decaying behaviour of all perturbations at 
large time. 

After obtaining some ideas on the effects of numerical parameters, the third part of 
this work involves the numerical simulation of the nonlinear development of 
perturbations. 

The contents of the paper are as follows. In $2, the linear-stability analysis for 
arbitrary vorticity and entropy distributions are described. Singular points, boundary 
conditions and their numerical treatment are also discussed. Results of the linear- 
stability analysis are presented in $3. The behaviour of the far-field acoustic flux with 
Mach number is also computed. In $4, the numerical study of the linear initial-value 
problem is described. A linearized compressible Euler code is first developed using 
finite-difference methods and the effects of different numerical parameters are studied. 
Results of random initial perturbations are then provided. In $ 5 ,  the nonlinear 
development of the perturbations is considered. The numerical method is described 
and then validated against linear theory. The long-time development of an elliptic 
mode perturbation and the behaviour of the far-field acoustic power are studied. A 
summary and discussion are given in $6. 

After this paper was submitted, we learned of the low Mach number weakly 
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nonlinear analysis of Crighton & Williams (1993) and Williams (1992) on the 
Broadbent & Moore (1979) instability. Their work showed that the instability grows 
until a time is reached when the instantaneous vortex radius in a particular direction 
vanishes, in agreement with our numerical results. 

2. Linear-stability analysis 
2.1. Governing equations and solution methods 

The two-dimensional Euler equations in polar coordinates (r,O) fixed in an inertial 
reference frame are 

. a, 6 )  av, av v av v 2  1 ap avo V , ~ V  

at ‘ ar r a0 r p a r ’  at ’ ar r a6 r pr 30’ 

ap 1 a i a  as as v , a s  
-+--(‘prv,)+--(’pv,) = 0, -+vr-+--= 0, at r ar r a0 at ar r a0 

-+,_r+er-2 =--- tls+,-+-LW =--- ( 2 1  

(2.1 c, d )  

where p is the density, p is the pressure, S is the specific entropy and v, and v, are 
velocity components. An ideal gas with constant specific heats c, and cp is assumed 

S = c,lnp-c,lnp+S,,, (2.1 e )  with the equation of state 

where So is a constant. 
The steady basic-state flow is assumed to depend only on r and to have zero radial 

velocity. It is represented by variables with an overbar and satisfies 
- 

“, s = c, lng- cp  1np+ so. - 1 dp 
p d r  r (2.2a, b) 

Given any two of &, S, p and g, the other two can be determined. 
Small perturbations of normal-mode form are added to the basic-state variables, e.g. 

vo(r, 8, t )  = &(r) + B,(r) ei(wt+m6), (2.3) 
where the eigenfunctions (such as fi,(r)) are complex and their real parts constitute the 
physical variables. 

All variables are normalized by scaling with the respective physical quantities at 
r = a where 6 is maximum (except for the pressure which is scaled by p V i  at r = a). 
The reference Mach number M is defined to be the local Mach number at r = a.  For 
convenience, S,, is chosen such that S(a) = c,. The normalized radial coordinate x, the 
normalized eigenfrequency f, the normalized basic-state variables denoted by a 
circumflex, and the normalized eigenfunctions R, U ,  V ,  P for p(r) ,  B,(r), B,(r),p”(r), 
respectively, are defined by 
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B(x) = ib 

(2.5 c) 
moi PM’ 1 

P 2 ~ 2  2mP 
xt2 x2& ’ where A(x) = 

and 

with 

(2.6a, b) 

(2.7a, b) 

where t and P are the normalized sound speed and tangential velocity respectively. 
Given the basic-state solution and the boundary conditions at zero and infinity, the 

system (2.5 a, b) defines an eigenvalue problem for the complex frequency f = f, + &. 
The angular phase frequency (henceforth referred to as the frequency) is given byf, and 
-& gives the growth rate. 

It is physically necessary to assume that the pressure and radial-velocity 
perturbations, P and U,  are finite and continuous everywhere. Since the right-hand 
sides of (2.5a, b) contain the vorticity oi explicitly, a discontinuity in oi implies a 
discontinuity in both dP/dx and dU/dx. This is true, for example, for the Rankine 
vorticity profile. From (2.6 b), the eigenfunction for tangential velocity V is 
discontinuous where oi is discontinuous (unless U = 0 at the 4 discontinuity). 

For arbitrary basic states, the solution to (2.5a, b) can only be obtained numerically. 
The singular points of the ordinary differential equation (ODE) set have to be analysed 
with care. The boundary condition at zero is that the perturbations must remain 
bounded, while the solution at infinity is taken to correspond to outward-going waves 
(incoming waves which correspond to a forced flow are not considered in this analysis). 
It can be shown that the ODE system for incompressible flow can be obtained by 
setting M = 0 and t2 = 6 = 1. The condition at infinity is replaced by the condition of 
vanishingly small perturbations. 

The complex eigenfrequency f is obtained iteratively by applying a numerical 
integration scheme to the ODE system (2.5 a, b) and matching at some x = xmatch. The 
value off is iterated by a Newton method until P / U  is matched at xmatch. Then, the 
values of P and U can be matched by choice of free eigenconstants. Convergence is 
typically achieved in about 5 to 8 steps for the cases considered. 

2.2. Basic-state variables 
Relations satisfied by the basic-state variables are derived below. Continuity of the flow 
variables is assumed everywhere except at a finite number of locations away from the 
origin. Viscous effects on the basic state in the linear-stability analysis can be 
disregarded provided the viscous timescale is much greater than the instability 
timescale; or Re p - l/& where Re = aG(a)/v  and -& is the normalized growth rate. 
For the cases considered in $3, Re 9 lo2 is required. Khorrami (1991) and Duck & 
Khorrami (1991) have shown that for an incompressible trailing vortex with axial flow, 
viscosity can destabilize modes which are inviscidly neutral. Their growth occurs on the 
viscous timescale. It is possible that similar modes occur in the present situation but a 
viscous analysis is beyond the scope of the present work. 

The assumption of uniform entropy has been frequently used in previous work to 
simplify the analysis. However, compressible vortices generated from boundary-layer 
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separation are typically non-hornentropic due to viscous heating. For steady 
axisymmetric vortices, Crocco’s theorem reduces to 

- d H  -dS 
’ dr dr’  
I/ a = _- T-  

where T and H = c, T+p/p++B; are the temperature and the total enthalpy of the 
basic state, respectively. Hence homentropic flow implies that the total enthalpy must 
vary in the vortical region. On the other hand, if the total enthalpy is constant in this 
region, then the flow must be non-homentropic. In general, both the entropy and total 
enthalpy are non-constant. 

Typically, the basic-state vorticity 6(x )  and entropy $(x) distributions are given and 
the other flow variables are to be found in terms of these. Given 6, integration of 
(2.7b) gives P: 

P(x) = - ad(a)da. (2.9) 

t2 = yM2@/6. (2.10) 

(2.1 1 )  

X ‘ s :  
The normalized sound speed t is given by 

From (2.2b), the normalized entropy can be written as 
3 = In ( y ~ ~ f i / b y )  + I .  

By defining $(x) = <$w- 1)/Y, 

(2.12) 

the normalized pressure, density and sound speed can be evaluated as follows: 

By imposing fi(0) > 0, the following Mach number restriction is obtained: 

A -  f i  = ( l / ( y ~ 2 ) ) @ ( ~ - 1 ) ,  b = ~ : / ( Y - U  e-9, , E2 = I,eSu. (2.13) 

(2.14) 

Increasing the Mach number has the effect of lowering the minimum pressure until it 
reaches zero, which corresponds to a vortex evacuated at the centre. Further increasing 
the Mach number beyond the bound in (2.14) will result in a finite evacuated region. 
This regime is excluded from the present analysis. 

2.3. Singular points and boundary conditions 
2.3.1. Singular points of the ODE system 

The ODE set (2.5a, b)  can be cast into second-order form as follows: 

(2.16) 

B 
B 

C’ 
C 

, cP(x) = A--A’+AD-BC,  

, cU(x)=D--D’+AD-BC,  

where 
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X Mach no. A(x) B(x) C(X) D(x) b,? b ,  C P ,  c ,  
0 M a  0 O(x-1) O(1) O(x-2) O(x-1) O(x-1) O(x-2) 
a3 M >  o ~ ( x - 3 )  O(1) O(1) O(x-1) O(x-1) O(1) 
co M = 0 O(x-3) 00) O(x-2) O(x-1) O(x-1) O(x-2) 

TABLE 1.  Leading orders of expansions of A,  B, C ,  D,  b,, b,, c,, c, for 
f 9 0 and non-hornentropic flow 

and the prime denotes differentiation with respect to x. In order to determine the 
nature of the singular points for this system, the series expansions of the basic-state 
variables 3, f, t2, ,6 and d$/dx in powers and inverse powers of x at x = 0 and 
x = tx) respectively are required. The expansions are then substituted into A ,  B, C, D.  

All flow variables are assumed to be finite and continuously differentiable at the 
origin. For many vortex flows observed in practice, the region near the centre 
approximates that of solid-body rotation. Hence, the leading constant term in the 
Taylor expansion for 3 is non-zero. For homentropic flow, the equations in 42.2 imply 
that the expansions for ta and i? go in even powers of x. For non-homentropic flow, 
the entropy gradient is assumed to consist of odd powers of x only. This form of the 
expansion has been guided by the analytically fitted empirical profiles of Mandella 
(1987). 

For large x, the expansion of 3 in inverse powers of x is zero while the expansion 
of fcontains only a single non-zero term in x-l. For homentropic flow, the expansions 
for ,6 and E2 as x -+ co consist of inverse even powers of x. Again guided by Mandella's 
empirical profiles, the entropy gradient for non-homentropic flow as x 3 co is assumed 
to have an expansion consisting of inverse odd powers of x starting at the x - ~  term. 

The resulting leading orders of the expansions for A ,  B, C, D for non-zerofand non- 
homentropic flow at x = 0 and as x +  00 are given in table 1. 

For both compressible and incompressible flow, x = 0 is a regular singular point. 
However, at x = tx), the BC term in (2.16) for the compressible case is 0(1), which 
implies x = co is an irregular singular point. For the incompressible case, the BC term 
is O(X-~) and so x = 00 is a regular singular point. For f = 0, it can be shown that 
both x = 0 and x = co are regular singular points for both incompressible and 
compressible flows. 

2.3.2. Boundary conditions 
Since x = 0 is a regular singular point, a series solution of the following form exists : 

(2.17) 
where the constants U,, P,, U,, . . . can be expressed in terms of Po and the coefficients 
in the series expansions of the basic state. In the numerical work that follows, it is 
found that sufficient accuracy is attained with just the first term in the series. 

An irregular singular point is located at infinity for compressible flow. The order of 
the expansions in inverse powers of x for b,, b,, c p  and cu given in table 1 implies that 
an asymptotic solution of the following form exists (see Ince 1926, 47.3): 

P = x"(Po+ P, xa + . . .), u = x"-'(V, + u, x2+ I .  .), 

P -  [ p:x-texp ( -- ;3)](1+$+..*), 

u - [u: x-4 exp (--%)I (1 +$ + . . .), 
(2.18~) 

(2.186) 
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where p,*, u,*,pT, u:, . . . are constants and the u constants can be expressed in terms of 
the p constants, e.g. 

(2.1 8 c) 

The solution with a positive sign in the argument of the exponential is rejected because 
it does not represent outward-going waves. Broadbent & Moore (1979) arrived at the 
same form as (2.18) by a different approach which considers a uniform medium at rest. 
For incompressible flow, the point at infinity is a regular singular point, and admits a 
Frobenius series solution. 

2.3.3. Singularities due to zeros of & 
The complex zeros of 2 = f + m( f/x) are singular points of (2.5 a, b). For cases close 

to neutral stability, the imaginary part offis a small number, and the &-roots lie very 
close to the real axis. There may still be problems with integration along the real axis 
near these roots since the magnitude of the right-hand side will become very large 
relative to the values of P and U and accuracy may be lost. 

Broadbent & Moore (1979) used the Riccati formulation which eliminates this 
problem for cases where the zero of 2 falls in the region of zero vorticity, which is the 
case for the Rankine vortex. For cases where the zero of 2 lies in the vortical region 
and for cases where the vorticity extends to infinity, the Riccati formulation does not 
remove the singularity. 

Another method that can be used is to deform the contour of integration around the 
singularity in the complex plane. This requires analytic continuation of the basic-state 
variables into the complex plane, which is not valid in the neighbourhoods where any 
of these variables have discontinuities in the first derivative. In cases where the 
discontinuities of the basic state lie away from the deformed contour of integration, 
this technique has given us good results. However, for the truncated Gaussian profiles 
considered in 93.3, the singularity and the deformed contour of integration get closer 
and closer to the discontinuity of the basic state and this method fails. 

The major obstacle in the singular-point analysis of the zero of & is that its location 
is unknown in advance. Also, unlike the points x = 0 and x = co, the basic-state 
variables for different cases do not necessarily have the same form at the zero of 2. 
Generalization can only be achieved if the zero of & falls within the region of zero 
vorticity where P decays like x-’. For a similar reason, the entropy is assumed to be 
constant in the region of zero vorticity. 

Let x, be the real zero of & located in the irrotational region and let 5 = x - x,. Since 
the basic-state sound speed and density are analytic everywhere, the above then implies 
that b, and c, are regular, i.e. the ODE for U does not have a singular point at 
x = x, for either compressible or incompressible cases. However, b, is O(cl) and cp  is 
O(Cz)), so x = x, is a regular singular point of the ODE for P. The resulting exponent 
of 5 in the leading term of the Frobenius series for P is positive. So there is actually no 
‘singular behaviour’ at x, if it lies within the region of zero vorticity and constant 
entropy. This is indeed true for most of the cases considered in the next section. In the 
numerical integration, A and C that contain l /& are multiplied by P. So a very large 
number is multiplied by a very small number. With the high-precision floating-point 
representation on the CRAY-2, the round-off error that may arise from this is 
maintained within acceptable limits. 
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3. Results of linear-stability analysis for various cases 
3.1. Rankine vorticity profile 

Broadbent & Moore (1 979) considered the compressible homentropic Rankine vortex 
with vorticity profile 4 ( x )  given by 

2, O < X < l ,  { 0,  x > 1 .  
O(X) = 

The Mach number restriction given in (2.14) reduces to M < ( 2 / ( y -  1));. 
The eigenfrequencies obtained by the shooting method described in $ 2  compare 

extremely well with those obtained by the Riccati formulation used by Broadbent 
& Moore (1979). The angular phase velocity of the mth mode is ( - f , / m ) .  Since 
- m  <f, < 0, the wave travels in the same direction as that of the basic flow and 
has an angular speed of less than unity. Thus it rotates slower than the core, which 
rotates at an angular speed of one. 

The discontinuity of the tangential velocity eigenfunction V,  and the discontinuity 
in the derivative of the other eigenfunctions at x = 1 are due to the discontinuity of 
vorticity at this location. A more satisfactory explanation for this jump is that the 
radial perturbation velocity, which is of order 6, causes the boundary of the vortical 
region to oscillate by a distance of the same order. The shapes of the linear 
eigenfunctions cannot depend on E ,  and hence the eigenfunctions cannot give 
information about a region of width O(6). Therefore, the behaviour of the 
eigenfunctions in such a region can only be represented by a finite jump in the value 
or slope at x = 1. In order to obtain information about this region, the use of 
Lagrangian analysis is required, e.g. by consideration of the perturbed shape of the 
boundary of the vortical region as is done by Lamb (1932, $ 158) for the incompressible 
case. 

It was suggested by Broadbent & Moore (1979) that the instability of the 
compressible vortex is triggered by the ability of the system to radiate acoustic waves, 
which allows the perturbations to extract energy from the mean flow. The sources and 
sinks of perturbation energy can be examined by considering the evolution equation of 
a positive definite energy-like quantity (Broadbent & Moore 1979). For homentropic 
flow, the growth of the perturbation energy is governed by the phase difference between 
the complex eigenfunctions P and U. 

In figure l ( a ) ,  the real part of 3 and the phase difference between the complex 
eigenfunctions P and U are plotted against x for the incompressible case. The phase 
difference between P and U is piecewise constant and is exactly in to the left and in to 
the right of a transition point that coincides with the zero of d. This can be seen from 
the exact solution for the incompressible eigenfunctions : 

ixm, 
P =  

x <  1 ,  

( 3 . 2 ~ )  

(3.2b) 

U is real and positive and hence arg ( U )  = 0, while P is imaginary with only one simple 
zero and it coincides with the zero of C?. So Pchanges sign at the zero of C? which implies 
arg(P)-arg(U) goes from in to zn. 
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Figure l(b) shows the corresponding plot for a compressible case. The phase 
difference between P and U is no longer a constant. For the present case, the zero of 
3 is slightly off the real axis in the complex plane. The zero of P is still close to the zero 
of 3 and hence it is expected to have a small imaginary part. Therefore the transition 
point of the phase difference between P and U still occurs very close to where the real 
part of 3 goes to zero, as shown in figure 1 (b). 

It is suspected that f = 0 is a solution for the rn = 1 mode. By settingfto zero and 
then marching P and U from zero and the far field to the matching point, it was found 
that the values of P/  U on each side of the matching point agree to w lo-’. It was then 
concluded that f = 0 is a solution for the rn = 1 mode for compressible homentropic 
flow. 

3.2. Results for vorticity pro$les with transition regions 
A study is performed on continuous vorticity profiles to determine whether the 
instability is peculiar to the Rankine vortex. Two vorticity profiles are considered in 
which a transition region of width 6 exists between the constant value near the core 
centre and zero value outside. 

The first vorticity profile has a linear-transition region. The normalized vorticity is 
given by 

0 < x < 6 2 ,  
$))(I -x/6>, 6-s^ < x < 6, (3.3) 

x > 6, 
where D is the angular velocity of thc inner solid-body rotation region, b is the 
dimensional size of the vortical region, S = S/a is the normalized width of the linear- 
transition region and 6 = b/a .  Also we define &‘ E 6/b.  

The second vorticity profile has a cosine transition region. Unlike the first case, this 
profile has no discontinuity in slope. The normalized vorticity is given by 

0 < x < 6-g  
[I + cos (xs)l, 6 - ŝ  < x ,< 6, 

x > 6, 
(3.4; 

where x8 = (n/if) (x - 6 + i). 
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For a particular s', the variations off, andf, with Mach number are similar to those 
for the Rankine vortex (see figure 2a, b). The effect of different s" is shown in figure 
3(a, b)  where s" = 0 corresponds to the Rankine vortex. Note th5t with the 
normalization used, the maximum P and its x-location remain fixed as 6 is varied. 

For the linear transition profile, the magnitudes of bothf, andf,  increase with 
s". It appears from the plots that the rate of increase tends to zero as s" tends to its upper 
bound of f  (corresponding to a s' of 1.0) where the region of solid-body rotation has 
shrunk to zero. So the instability of vortices of this type increases with increasing s" if 
the vortices have the same maximum velocity. 

For the cosine transition profile, bothf, andf, peak at about s" = 1 .O (corresponding 
to 6" = 0,7). This behaviour is quite different from that of the linear-transition case. At 
a given 6, the linear transition case is more unstable than the cosine transition case. 
However, it was found that when a different normalization scheme is used (keeping 
total circulation constant), the cosine transition case becomes more unstable than the 
linear transition case. 

The P eigenfunction for the cosine transition case with m = 2, A4 = 1.5 and 
s' = 1.0 is plotted in figure 4(a, b). The overall behaviour is similar to that of the 
Rankine case, except that here all the eigenfunctions are continuous and have 
continuous derivatives everywhere. For this reason, this case is used as one of the initial 
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conditions for the study of the linear initial-value problem in $4 and the nonlinear 
problem in 5 5 .  

3.3. Gaussian and truncated-Gaussian vorticity profiles 
The goal of this section is to study a case where the vorticity has continuous derivatives 
to infinite order, extends to infinity and decays exponentially with distance from the 
origin. The Gaussian vorticity profile is chosen for this purpose. Also, it is a solution 
at an instant of a diffusing circular potential vortex under the action of viscosity (Lamb 
1932, $334~).  

Convergence was not obtained despite numerous trials with different starting 
guesses, iteration methods and integration schemes. In order to investigate the source 
of the difficulty, a family of Gaussian vorticity profiles truncated at x = 5 is considered 
such that the full Gaussian profile is recovered when 6 goes to infinity. The normalized 
vorticity is given by { :;e-KzZ/(1 -e-K), o < x < 5, 

&(x) = (3.5) 
x > 5, 

where the parameter K is chosen such that the maximum P occurs at x = 1. In order 
to have the same position of maximum P for different members of the sequence, the 
restriction 6 2 1 is imposed. With this scaling, 6 has to be of the order of only 4 or 5 
before the profile becomes practically Gaussian. 

The eigenfrequencies for different values of 5 are obtained for three different 
reference Mach numbers starting from 6 = 1 (see figure 5a, b). The incompressible 
limit ( M  = 0) is found to be neutrally stable. Bothf, andfi decrease with increase of 
5 and the growth rates for the compressible cases quite rapidly approach zero as 6 
becomes large. The trends suggest that the Gaussian vortex is neutrally stable for all 
reference Mach numbers. Convergence becomes increasingly difficult as 6 is increased 
until 6 M 2.4 where no convergence is obtained. Note that the position of the zero of 
3 is in the region of zero vorticity for small values of 6 and asymptotes towards the 
boundary of the region of non-zero vorticity as 6 increases (figure 6 a ,  b). This makes 
deformation of the contour of integration more and more difficult. For all the vorticity 
profiles considered up to this point, the zero of 6 lies at a finite distance away from the 
boundary of the region of non-zero vorticity and there were no problems in 
convergence. As discussed in $2.3, if the zero of 6 approaches the region of non-zero 
vorticity, the singular-point behaviour may depart from being regular. When this 
happens, convergence difficulties are observed. 



Two-dimensional inviscid compressible vortices 185 

1.4 i 0.015 - 

(a)  

-.A 
0.005 - 

0.6 

0.4 7 0 4  

(b) 
L.. L.... *.... *.... %. .. b... 

k.... 
0.010-'----.. A,.. 

-0.. "a. 
0.. -. 2.. 

-0.. 

-., b.. 
0. 

*m. "L.., --.*-a - ' - -  - - - -  

.C 5 2.2- (4 
0 a -  

1 .o 1.4 1.8 2.2 

*.. .. 0- :. 
0 - - - - - . - - - - - ?  
1 .o 1.4 1.8 2.2 

5 5 
FIGURE 6. (a) Real part and (b) imaginary part of the zero of 6 against k for the truncated-Gaussian 
vorticity profile with m = 2 and different reference Mach numbers M :  -.--v-.-, M = 0; - - -@- - - ,  
M =  0.8; ...A..., M =  1.5; -, reference line. 

3.4. Efect of entropy gradient 
In this subsection, the effect of non-constant entropy for the Rankine vortex is 
investigated. The choice of an entropy profile for a model problem is guided by the 
experiments of Mandella (1 987). Since the vortices he generated were unsteady, they 
cannot be used as basic states in the stability analysis. However, a model entropy 
profile can be constructed based on his results. Inside the constant-vorticity region, the 
entropy behaviour near the origin of Mandella's vortex is used. In the irrotational 
region, the entropy is set to a constant chosen to preserve continuity at the boundary 
of the two regions. 

The expression for ,!$ represents a family of entropy profiles given by 

where the parameter g2 is the average entropy gradient in the core. Both the entropy 
gradient and the vorticity which appear on the right-hand side of the ODE system 
(2.5a, b) are discontinuous at x = 1. The behaviour of Mandella's vortex near the 
origin corresponds to a value of 9, approximately equal to 1.0. An example of a case 
where the entropy decreases with distance from the vortex centre, corresponding to a 
negative g2, can be found in the rolled-up vortices in mixing layers (Sandham 1989). 

7 FLM 253 
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Figure 7(a, b) shows the variations off,  andf;: with reference Mach number M for 
several values of s, for the m = 2 mode. The results indicate that a positive average 
entropy gradient tends to destabilize the vortex while a negative average entropy 
gradient has the opposite effect. The peak of -fi occurs at a lower M as s2 is increased. 
For a given reference Mach number M ,  the magnitudes of both f, andh increase with 

The destabilizing effect of positive entropy gradient can be qualitatively understood 
by noting that the effective Brunt-Vaisala frequency (Howard 1973) can be written as 

3,. 

(3.7) 

i.e. positive entropy gradient corresponds to unstable stratification. 
The variations off,  andh  with j2 for m = 2 and 3 at M = 0.8 were also computed. 

The trends for the two azimuthal mode numbers are similar. For a given S,, the 
m = 3 mode has a larger magnitude forf, and a smaller magnitude for& relative to 
those for m = 2. 

3.5. Comparison of far-Jeld acoustics with Lighthill’s theory 
It is of interest to compare the acoustic flux predicted by linear-stability analysis with 
the seventh-power law of Lighthill (1952), valid for a two-dimensional sound source at 
low Mach numbers. The same power law was also obtained by Howe (1975) and 
Broadbent (1976) for the far-field acoustic energy flux of an elliptical vortex with small 
aspect ratio and constant core vorticity in low-Mach-number flow. It is worth noting 
that, according to Broadbent (1976), the elliptic mode is the most efficient, while the 
higher-order modes (m h 2) produce progressively higher-order poles which are less 
efficient. 

The basic-state vorticity with a cosine transition is considered with 6’ = 1.0 and 
m = 2. Since the Mach number in Lighthill’s theory is defined using the sound speed in 
the medium at rest, in this section only ‘Mach number’ will refer to M’ defined by 

M’ = &(a)/qm). (3.8) 

The far-field radial acoustic energy flux E, is defined as 
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where an overbar denotes a time average. After defining a normalized far-field radial 
acoustic energy flux 2,. referenced to far-field quantities, 

one obtains 

1 Er 
up( co) F3( co) ’ E,. = (3.10) 

Er(x) = (a) Mf3nx[Re (P(x))  Re (U(x))  + Im (P(x))  Im (U(x))] .  (3.11) 
P ( W )  

The variation of k,. at large x with Mach number M’ is plotted on a log scale in figure 
8 where the eigenfunctions are scaled with the constant Po set to 1 (see 2.17). It was 
ensured that x is large relative to the period of oscillation of P and U in the far field. 
As anticipated, the low-Mach-number result agrees with Lighthill’s theory. The 
leading-order term for small M‘ in the expansion for p(u)/p(co),  the first factor in 
(3.11), is independent of M’ (see 92.2). Hence the main contributions to the variation 
of E,. at low Mach numbers arise from the M’3 factor and the PU product terms in 
(3.1 1) which must scale like M’4. Substitution of the leading-order far-field behaviour 
of P and U given by (2.18 a, b) into (3.11) indicates that the leading-order term for the 
quantity in square brackets in (3.1 1) is given by Re (p;) Re (u;) + Im (p;) Im (u;). From 
(2.18c), u; scales like M’p,*. The above then implies that p,* should scale like M’i and 
u,* should scale like M’a, and likewise for P and U,  for small M ’ .  This result was also 
verified numerically. 

At M’ w 0.3, deviation from the low-Mach-number theory begins to appear. The 
dependence of I?,. on M‘ is less powerful at higher Mach numbers. At M’ M 1.1, a sharp 
increase in k,. is observed until the evacuation limit (2.14) is reached. 

4. Linear initial-value problem 
In this section, the linear evolution of arbitrary disturbances is considered. The 

purpose is three-fold : (i) to inquire whether cases that have neutral normal modes may 
support algebraic instabilities; (ii) to use random initial conditions to search for new 
types of normal-mode behaviour which may have been overlooked in the past; (iii) to 
investigate whether typical finite-difference methods used in research and production 
codes such as ARC2D, ARC3D (Pulliam 1986a) and F3D (Ying 1986) are sufficiently 
accurate to capture the weak instability of the present problem. 

1-2 
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4.1. Numerical methods for the linear initial-value problem 
The linearized unsteady two-dimensional Euler equations are solved with a finite-dif- 
ference scheme. The normalized perturbation density, radial velocity, tangential velocity 
and pressure (R", c, P and P" respectively) satisfy 

aQ aQ aQ -+A,-+B,-+F= at ax ae 0, 

where 
(@/x) + db/dx) 6 

- (1 /bz) (d$/dx) f? - (2 ?/x) P 

(E2/Mz)(@/x) + dp/dx) o+$(dg/dx) 0 
Q = [ i ] ,  F =  [ GO 

A, = 

The eigenvalues A,, A, of A, and 8, are given by 

E C 
A,=0, 0, - -- M' M '  

(4.1) 

( 4 . 2 ~ )  

(4.2b) 

(4.3) 

Various elements of the numerical scheme are described below. For further details, 
the reader is referred to Chan (1990). 

Space derivatives are replaced by finite differences on a polar grid. In the azimuthal 
direction, a uniform grid spacing is used with fourth-order central differencing. In the 
radial direction, a fine uniform spacing Ax is used in the region 0 < x < 2 and the grid 
is stretched outside this region. Let 5 and 1 be the stretched radial coordinate and grid 
point index, respectively. The partial derivatives are replaced by finite-difference 
operators 8< as follows: 

In the evaluation of the metrics Q, fourth- and second-order central differencing are 
used in the interior and at one point from the boundaries respectively. Two options for 
the radial differencing are implemented. The first uses fourth-order central differencing 
with a small amount of artificial dissipation. The second employs a flux-splitting 
formulation which requires the use of upwind or upwind-biased differencing schemes. 

It is a well-known phenomenon that central differencing results in an odd-even 
uncoupling between grid points and gives the solution a sawtooth-like appearance. 
This is caused by slight inconsistencies or inaccuracies in the numerical boundary 
conditions and the aliasing errors from nonlinear terms. Some dissipative mechanism 
is required to damp out these numerical errors (Pulliam 1986a, b; Jameson, Schmidt 
& Turkel 1981). 

For the present problem, a small amount of fourth-order dissipation (Pulliam 
1986b) is applied in the radial direction. The dissipation term D, added to the right- 
hand sides of the ODES for time advance is 

a/ax = ~ 8 , .  (4.4) 

D,  = -A t  ~c(Vc Ac)'Qn, (4.5) 
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where ec is a non-negative parameter of O( 1) which controls the amount of dissipation, 
At  is the time step, Qn is the vector of dependent variables at time level n and the 
difference operators are defined by 

A54i,l = qj,z--qj,z-17 v,q,,z = 4j,1+1-4j,z. (4.6) 
The alternative to using central differencing with artificial dissipation is to use 

upwind-differencing in the radial direction, which can be shown to be equivalent to a 
central-differencing scheme (non-dissipative) plus an inherent amount of dissipation 
(Pulliam 1986b). The scheme that is employed here is similar to the split coefficient- 
matrix method developed by Chakravarthy (1979) and is described next. 

Consider the Jacobian matrix A, associated with the radial direction in (4.2). Let A 
be its diagonal eigenvalue matrix and X be its eigenvector matrix. A decomposition for 
A is, 

where A+ consists of all the positive eigenvalues and A- consists of all the negative 
eigenvalues. Then, A+, A- can be formed using 

A = A++A-,  (4.7) 

L o  ; P / M ~  o *c"/MJ 

where A, = A+ +A- is satisfied. The radial derivative in (4.1) is then approximated by 

(4.9) 

where q, Si. are backward and forward one-sided differencing operators, respectively. 
The following three one-sided schemes are considered : first-order upwind, second- 
order upwind and third-order upwind-biased given by respectively, 

(4.10~) 
(4.10b) 
(4.10 c) 

8; = 41 - 41-19 8; = 4z+1- 41 ; 
q = #qz - 4ql-, + q d  di = f( - 34, + 4ql+, - ql+J ; 

q = mil,, + 3% - 64,-,+ 4z-2), J{ = 5( - 241-1- 3q,+ 6q1+, - 41+2). 

The performance of these schemes is discussed in $4.3. 
Time advancement is performed using the third-order Runge-Kutta scheme (RK3) 

of Wray (1986), which requires less storage than other typical RK3 schemes. 
The boundary condition imposed at the origin is that all perturbation quantities 

vanish. This is required for smoothness at the origin for m > 1. In the far field, the 
condition of ' outward-going waves ' has to be implemented. A non-reflective boundary 
treatment (Thompson 1987) is used to minimize 'incoming waves' from the far field. 
Although this scheme has been derived from a one-dimensional analysis, its use is 
justified in our two-dimensional problem since the dominant mode (m = 2) has 
variations tangential to the far-field boundary which are much smaller relative to the 
variations normal to the far-field boundary. The implementation of this scheme for the 
present problem is described in detail in Chan (1990). 

For an inviscid flow, in the absence of viscosity and heat conduction, the entropy 
production is zero. Hence, a flow that is initially homentropic will remain so for 
subsequent times. For a homentropic basic state, the linear eigenfunctions are 
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FIGURE 9. Natural log of amplitude of m = 2 mode for cosine-transition vorticity profile 

with 8' = 1. (a) Slope = frequency, (b) slope = growth rate. 

homentropic to linear order. For the computations described in $94.2 and 4.3, in the 
presence of dissipation in the optimum range, the pointwise entropy error is typically 
about four orders of magnitude smaller than the maximum magnitude of the 
eigenfunctions initially and remains so during the computation. 

Growth rates and frequencies are analysed by plotting the azimuthal Fourier 
coefficient (corresponding to a mode m) in log-linear coordinates at the radial location 
x = 0.8. 

4.2. Detailed study of a typical case 
The linear initial-value code is tested using eigenfunctions for the cosine-transition 
profile (8' = 1, m = 2 and M = 1.5) as initial conditions. In the azimuthal direction, the 
mesh is uniform with 128 points. In the radial direction, the mesh is made up of a fine 
uniform region in 0 < x < 2 with 81 points and an exponentially stretched region in 
2 < x < 20 with 116 points. Fourth-order central space-differencing is used in both 
directions with ec = 0.5. The time step used is 0.004 which is just inside the stability 
bound for RK3. 

Figure 9(a, b) shows the log of the amplitude for the m = 2 mode. The plots are 
linear up to t x 12 and the slopes agree to within 0.2% with the eigenfrequencies 
computed by the shooting method described in $3. The amplitudes of other Fourier 
modes remain insignificant which implies that the finite-difference scheme has not 
introduced any spurious modes. 

The agreement between the linear initial-value problem solution and the normal- 
mode solution was further confirmed by sampling the frequencies and growth rates at 
three different radial positions. Identical values were obtained, except for small 
differences at the far-field location where the resolution is poor. 

4.3. Effects of different numerical parameters 
We wish to briefly discuss the effects of different numerical parameters on the 
computed frequencies and growth rates. This establishes aspects of the method that 
must be treated with care in subsequent linear and nonlinear calculations. The case 
described in $4.2 is used as a base case for comparisons. 

It is found that the numerical stability bound of the explicit time march scheme 
places a more stringent restriction on the time step than the requirement of resolving 
the smallest timescales of the instability. 

The growth rate increases with the level of dissipation present in the scheme, but 
there is a range of values of the dissipation coefficient, 0.05 d e5 Q 0.5, that gives 
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" I  -f, -f, 
* 0.8201 0.01243 

0 0.82009 0.012401 
0.05 0.82009 0.012405 
0.1 0.82009 0.012406 
0.5 0.82008 0.012409 
2.0 0.82006 0.012418 

TABLE 2. Frequencies and growth rates for different dissipation coefficients c5 at small time ( t  < 2) 
with fixed uniform interior radial grid spacing Ax = 0.025 (*, eigenvalue shooting method) 

Ax -f, -f, 
0.025 0.8201 0.01241 
0.05 0.8200 0.01243 
0.1 0.8197 0.01229 
0.025* 0.8201 0.01244 

small time ( t  < 2) with fixed dissipation coefficient c5 = 0.5 (*, poor far-field resolution) 
TABLE 3. Frequencies nd growth rates for different uniform interior radial grid spacing Ax a 

almost identical and accurate results (see table 2). The frequency is captured accurately 
for an even larger range of values of the dissipation coefficient. With the dissipation set 
to zero, the scheme is still able to give good results for small time before oscillations 
start to contaminate the solution. 

There have been many computations of unsteady compressible flows in which a 
stretched mesh is used in the far field (e.g. Chen, Cantwell & Mansour 1989). The 
question then arises as to whether poor resolution of sound waves propagating in the 
far field would lead to errors in the inner field. 

Four cases are studied. For the first three cases, three values of uniform Ax (= 0.025, 
0.05,O.l) are used in the region 0 9 x < 2, while the mesh spacing is identical for the 
three cases in the stretched region (1 16 points used). In the fourth case, a fine uniform 
spacing of Ax = 0.025 is used in 0 9 x < 2 while the resolution in the stretched region 
is made to be very poor (56 points). 

It is found that the growth rate is much more sensitive to the mesh resolution in the 
near field than in the far field, i.e. the inability to resolve the eigenfunction in the near 
field results in poor growth rates, while the inability to resolve the eigenfunctions in the 
far field still results in fairly accurate growth rates (see table 3). Again the frequency 
is not sensitive to changes in mesh resolution. 

Results are obtained for cases using the three upwind-differencing schemes listed in 
(4 .10~-c )  with the split coefficient-matrix formulation. The growth rate obtained using 
the third-order scheme is nearly identical to that found with the fourth-order central 
differencing scheme with dissipation in the optimum range. The growth rate for the 
second-order scheme is slightly higher than that of the third-order scheme, while the 
growth rate of the first-order scheme is much higher than that of the second-order 
scheme. These results are consistent with the earlier observation that an increase in the 
level of dissipation results in an increase of the growth rate. It is found that the 
frequency is essentially independent of the choice of differencing schemes. 

Runs with different far-field boundary locations keeping the inner resolution 
constant indicate that the results are not affected provided the far field is not located 
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too close (x < 10) to the vortex core. A test was performed to investigate the sensitivity 
of the far-field boundary treatment. Results identical to those found using the non- 
reflecting conditions are obtained for t < 25 when zeroth-order extrapolation is used 
for all four variables at the far-field boundary. 

4.4. Random initial perturbations 
Up to the previous section, the computations performed with the linear finite-difference 
code used eigenfunctions as initial conditions. With some knowledge of the sensitivity 
of the method to different numerical parameters, we can now perform studies using 
random initial conditions. 

Since the Fourier modes in the periodic &direction form a complete set, a study of 
random behaviour in 6' is not necessary. Hence, randomness is only introduced in the 
radial direction by the function gz whose magnitude is made to decay exponentially in 
the far field. The initial condition (&L is given by 

(4.1 1) 

where 0, is the polar angle at thejth grid point in the azimuthal direction. Since the 
high-order azimuthal modes are expected to be close to neutrally stable, only small 
values of N ,  are considered. 

First, the basic state with cosine-transition vorticity (8' = 1) in 84.2 is considered 
with the m = 2,3,4 modes in 6' excited (N ,  = 4). The plots of log of amplitude in figure 
10(a, b) show that the real and imaginary parts of the rn = 2 mode eventually settle 
down to straight lines, indicating that the long-time behaviour contains an exponential 
term. On comparing the slopes of these lines at large time, it is found that they agree 
to at least three decimal places with the frequency and growth rate that we obtained 
from the shooting method. 

For the m = 3 and 4 modes, the shooting code failed to converge when an initial 
guess close to the m = 2 eigenfrequency was used. Now, from figure 10(a, b), the 
growth rates for large time for both the m = 3 and 4 modes appear to be close to zero, 
and the long-time behaviour of the frequencies appears to be of the normal-mode type. 
This indicates the existence of nearly neutral normal-mode solutions for m = 3 and 4. 
Note that the frequency of the m = 3 mode is of the opposite sign to that of the m = 
2 mode, i.e. the wave for m = 3 rotates in the opposite direction to that of the vortex. 
To verify this, the eigenvalue-shooting code was used with an initial guess that has a 
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mode m - f ,  (es) -A (es) -f, (rp) 
2 -0.1649 -0.1453 x lo-' - 

3 -0.1779 -0 .3319~  -0.181 

TABLE 4. Eigenfrequencies for counter-rotating waves for cosine-transition vorticity basic state 
with M = 1.5, 8' = 1.0 (es = eigenvalue shooting method, rp = random initial perturbations) 

4 -0.3439 -0.1531 x +0.267 

mode rn - f ,  (es) -f, (es) -f, (rp) 
2 
3 -0.021 60 -0.1625 x lo-'* -0.018 
4 -0,11724 -0.5408 x 

- - - 

- 

4 +0.58032 -0.8039 x +0.583 
TABLE 5. Eigenfrequencies for corotating and counter-rotating waves for Gaussian vorticity basic 
state with M = 1.5 (es = eigenvalue shooting method, rp = random initial perturbations; *, the 
differences in these decay rates are probably within convergence error) 

positive f,. Converged eigenfrequencies corresponding to counter-rotating waves that 
are very weakly decaying are then found (see table 4) for m = 3 as well as for m = 2 
and 4. 

Although figure 10(a) seems to indicate that there is a practically neutrally stable 
m = 4 mode which rotates in the same direction as the vortex, convergence to a 
corresponding solution was not obtained by the shooting method. 

The results of $3.3 suggest that the Gaussian profile is neutrally stable for rn = 2 
normal modes. Here, the long-time behaviour of random perturbations is investigated 
for A4 = 1.5 with the m = 2,3,4 modes excited. This will confirm whether algebraically 
growing modes exist. 

Plots of the log of the amplitude are given in figure 11 (a ,  b). The growth rates for 
all three of the excited modes appear to be practically zero. The frequency for m = 2 
also appears to be zero. For m = 3 and 4, a counter-rotating wave and a corotating 
wave are found respectively. Now, returning to the eigenvalue shooting code and using 
these results as initial guesses, counter-rotating waves for m = 3,4 and a corotating 
wave for m = 4 are obtained (see table 5). The differences in the very small decay rates 
obtained by the shooting method are probably within convergence error. 
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5. Nonlinear development of perturbations 
It is natural to ask what the fate of the vortex is in the nonlinear regime: will it 

continue to elongate unabated, reach an equilibrium state or undergo secondary 
instabilities? In this section, nonlinear behaviour is investigated via numerical solution 
of the two-dimensional Euler equations. 

5.1. Numerical method 
For convenience, the dimensional forms of the variables are used in the equations 
presented in this section. All variables are still normalized in the same manner as for 
the basic state variables in $2.1 (see (2.4)) and normalized variables are used in all 
the figures. 

The two-dimensional Euler equations in full conservation law form in polar 
coordinates in an inertial reference frame are 

where 

aQ aG, l a G ,  -+--+---+s=o, 
at ar r a8 ( 5 . 1 ~ )  

all the symbols have the same meaning as in $2.1 and e is the total energy per unit 
volume. The conservation law form of the Euler equations is employed in order to 
capture shocks accurately. 

In the circumferential direction, fourth-order central-differencing is used on the flux 
vector G,. A Pad6 filter (Lele 1992) is applied in this direction every N, steps to control 
the nonlinear build-up of high wavenumber errors. Let qj be an element of Q at grid 
pointj wherej is counted periodically on the mesh. Then the filtered values cjj are given 
by $,-1 + A ,  4j + &+I = b, qj + b,(qj-l+ 4j+J + bdqj-2 + 4j+2), ( 5 . 2 ~ )  
where b, = &If+3), b, = ;(;A,+ l), b, = $(I -;A,). (5.2b) 
The parameter A, controls the cutoff wavenumber while the parameter N, controls the 
amount of filtering. The ranges for A, and N, are 2.1 < A, < 3.0 and 50 < Nf < 100 
respectively. 

In the radial direction, the Steger & Warming (1981) flux-splitting scheme is 
employed, which requires one-sided differencing and no artificial dissipation. The 
radial flux derivative in (5.1 a) is replaced by 

&,G, = @G:+&FG,, (5.3) 
where c$' and 8; are third-order upwind biased difference operators in r defined by 
(4 .10~)  and 

Y (5.4) 

2gm A: + A$ + A,' 
2 g m A ~ v , + A ~ ( v , + c ) + h ~ ( v , - c )  

2gm A:?), + h$v,+ A:v, I G ' = P  
- 2 y  
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initial amplitude -f, -A 
* 0.8201 0.01243 

0.005 0.8200 0.01228 
0.01 0.8200 0.01227 
0.05 0.8199 0.01203 

TABLE 6. Frequencies and growth rates for M = 1.5 at small time with different initial 
perturbation-amplitudes (*, results of linear stability analysis) 

where g ,  = (y  - l), w E (3 - y) (A$ + A $ )  c2/(2g,), A’ = ;(Ai k lAJ) and A, = v,, 
A, = v, + c, A, = v, - c are the eigenvalues of the flux Jacobian matrix A, of G,. The 
flux vectors GF above are formed from G: = A:Q where A: = X,A:X;l with X,  
being the eigenvector matrix of A,, and A,? are diagonal matrices with A: and A; as 
their elements, respectively. 

The time-advance scheme is RK3 as in 94. The initial condition consists of the basic 
state for the cosine-transition vorticity profile with 8’ = 1 and M = 1.5 plus the 
m = 2 eigenfunctions from the normal-mode analysis. 

Since an m = 0 mode (purely radial variations) may be generated by nonlinear 
interactions, the flow variables must be updated in time at the origin. This is 
accomplished by locally solving the Cartesian form of the equations using central 
differencing on a five-point ‘cross ’ stencil centred at the origin, with the surrounding 
four points located at the first r = const. grid line. The velocity components should 
remain zero at the origin due to symmetry, and this was verified to be so. 

The basic state does not satisfy the finite-difference equations exactly nor the 
numerical boundary conditions. Although these errors are initially small, they generate 
perturbations that are amplified at each time step. These errors were reduced to a 
negligible level by subtracting out the finite difference operator acting on the basic state 
from the difference equations. 

It was pointed out to us (K. W. Thompson, personal communication) that the 
treatment of the far-field boundary by the non-reflective condition of Thompson (1987) 
does not preserve the steady basic state in time. This is because the ‘in-coming parts’ 
of the characteristic variables are set to zero by the Thompson condition, resulting in 
a loss of balance of radial momentum. The error will propagate inwards and 
contaminate the interior solution. This problem was remedied by adding the 
appropriate terms for the ‘ in-coming part’ of the basic-state characteristic variables 
such that radial momentum balance is restored (see Appendix). 

5.2. Validation of the method 
A (64 x 139) polar mesh with 64 points in the circumferential direction and 139 points 
in the radial direction is used. The initial behaviour of the m = 2 mode is found to agree 
with the prediction of linear theory at several Mach numbers. As examples, the 
frequencies and growth rates at M = 1.5 are given in table 6 for three different initial 
perturbation amplitudes. As expected, deviation from the normal-mode solution 
increases as the perturbation amplitude increases. 

Nonlinear terms are not the only cause of deviation from linear theory. The presence 
of the Pad6 filter also results in a slight departure ( M 0.6 %). Practically identical results 
for the linear behaviour are obtained by placing the far-field boundary at x = 20 and 
x = 40. 
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FIGURE 12. Perturbation-velocity field at t = 0; dotted circle indicates x = 1. 

5.3. Results of nonlinear simulations 
With the robustness and accuracy of the Euler code established, numerical experiments 
can now be performed with the insight gained to guide the choice of numerical 
parameters. In order to reach the nonlinear regime reasonably quickly, a fairly large 
initial perturbation amplitude of 0.05 is used. The results described below are for a 
(192 x 197) polar mesh with the far-field boundary at x = 20. Qualitatively similar 
results are obtained for a (128 x 197) mesh. Also, a (64 x 139) mesh gives similar results 
except that the angular phase velocities of perturbation Fourier modes for the radial 
velocity decay faster in time than with the finer meshes. 

5.3.1. Evolution of the perturbed vortex 
First it is instructive to consider the situation at t = 0. Near the vortex centre, the 

perturbation-velocity field is like a straining field (figure 12) while the total vorticity w, 
contours are approximately elliptical in shape and the vorticity is non-zero in the 
region x < 1.5 (figure 13). Since the density contours are approximately circular, the 
w,/p  contours are also elliptical. The vorticity equation is 

D w, - U T x U S  -H- Dt P P . (5.5) 

For a homentropic basic state, it can be shown from the linearized equations that the 
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t = O  t =  100 

t = 180 t = 330 

t = 430 t = 530 

t = 630 t = 730 
FIGURE 13. Normalized vorticity contours (min. = 0, max. = 10.25, increment = 0.25). Dotted 

circles indicate x = 1 and x = 2, and positive vorticity is out of the plane of the paper. 
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t = O  t = 100 

t =  180 t = 330 

t = 430 t = 530 

t = 630 t = 730 

FIGURE 14. Normalized density contours (min. = 0, max. = 3.4, increment = 0.1). 
Dotted circles indicate x = 1 and x = 2. 



Two-dimensional inviscid compressible vortices 199 

t = 230 t = 730 

FIGURE 15. Normalized perturbation density contours: ----, negative values; -, positive values; 
dotted circles indicate x = 1 and x = 2. At t = 230, min. = -0.30, max. = 0.22, inc. = 0.02; at 
t = 730, min. = -1.8, max. = 2.7, inc. = 0.2. 

entropy perturbation is second order. Hence the term on the right-hand side of (5.5) 
is zero to first order. This implies that w,/p  contours are convected by the local velocity, 
which consists of the basic state and the perturbation. Convection by the basic state 
results in circular motion about the origin while that by the perturbation is like a strain. 
The axis of strain is at approximately 45" to the major axis of the elliptical w,/p 
contours, which is not favourable for elongation of the vortex. This is consistent with 
the slow growth of the perturbations in the initial linear regime. If the axis of strain and 
the major axis of the elliptical vorticity contours were aligned, the elongation would be 
much faster and the subsequent behaviour would be very different. 

The evolution of vorticity and density in the region 0 < x < 2 is plotted in figures 13 
and 14. The eddy turnover time based on the normalized maximum tangential velocity 
is t ,  = 271. The evolution of the vortex can be divided into three main stages. The first 
is the linear regime. After t E 20, which marks the beginning of the second stage, more 
significant nonlinear interactions can be observed. The core becomes more elliptical 
and the vorticity near the centre intensifies. The core continues to elongate until the 
vortex splits into two corotating vortices after t x 350, which marks the end of the 
second stage. During the third stage, the vortices gradually move away from each 
other. 

Viscous effects during the simulation can be neglected provided the time of the run 
T , , ~  < a 2 / v ,  where a is the reference radial dimension of the vortex and v is the 
kinematic viscosity, or Re = aG(a)/v 9 T , , ~  &(a)/a. For the run described above, 
T,,, K(a)/a is 760, while typical values of Re for vortices found in high-speed aero- 
dynamic flows range from lo4 to lo5 (Dosanjh & Weeks 1965; Mandella 1987). 

Now the stages of the evolution after the linear regime are considered in more detail. 
One of the first effects of nonlinearity is the steepening of gradients near the ends of 
the elliptical core. These develop into weak shocklets at later times (the entropy change 
across them is small). This steepening is analogous to the steepening of compression 
waves in the one-dimensional equations of motion (Liepmann & Roshko 1957,§3.10). 
However, this analogy cannot be taken too far since the flow here contains significant 
radial variations. 

During the elongation stage, the maximum Mach number in the flow increases 
slowly (up to about 1.9) until splitting occurs ( t  z 350). The density contours are 



200 W. M .  Chan, K. Sharlffand T. H. Pulliam 

3 

4 s * .4 # 2 -  

Lo Lo 
a 
c 
0 
Lo 1 -  

- 
.- 
8 
E 
6 

I_ ! 
10 

FIGURE 16. Variations of normalized density and pressure at the origin: 
-, density; ----, pressure. 

almost circular initially. As the nonlinearity develops, small kinks appear that 
correspond to the steepening of the gradients (see figure 14); in figure 15, the t = 230 
plot indicates that the steep gradients lie in the regions of positive perturbation density. 
The density and pressure at the centre of the vortex increase with time (see figure 16) 
and after t = 430 a region of high density is formed about the origin. This is due to the 
action of the nonlinearly generated m = 0 mode that results in a net mass inflow near 
the vortex centre. This process is eventually accompanied by splitting. The vortex core 
gradually becomes more elliptical and then splits into two corotating vortices. The 
splitting of an inviscid incompressible vortex with an elliptical constant-vorticity core 
into two corotating vortices in an unbounded fluid has been observed in nonlinear 
calculations by Dritschel (1986). The linear-stability analysis by Love (1893) for this 
vortex indicates that it is unstable to a splitting mode (n  = 4 in elliptic coordinates) for 
aspect ratios greater than z 4.75. The rapid splitting observed in the present numerical 
simulations may be a similar inertial phenomenon. In the analysis by Love, the n = 3 
(filamentation) mode is the first to become unstable at an aspect ratio of three. In the 
present case, since only the m = 2 mode is excited initially, only even modes are 
nonlinearly generated, and a potential instability of the n = 3 mode may be suppressed 
for that reason. 

After splitting occurs, the maximum Mach number decreases (down to about 1 .O at 
t = 730). Immediately after the splitting, each of the vortices is elliptical in shape with 
new regions of steep gradients present at opposite ends inside each of the split vortices 
(see figure 13 at t = 430). The gradients gradually become less steep as the vortices 
move apart and the flow around each vortex becomes more circular. The density 
deficits in the split vortex cores relative to the far field are much less than that of the 
original vortex. The perturbation-density contour plot at t = 730 in figure 15 indicates 
that mass continues to move into the region around the origin after splitting occurs. 

As the vortices move away from the origin, their rate of rotation about the origin 
decreases. Two inviscid incompressible point vortices of strength r rotate with angular 
velocity 

where d, is the half-separation distance. The numerically obtained rotation rate 4 of 
the split vortices in the present case is compared with this expression in figure 17(a). 

& = r/(8.nd:), (5.6) 
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Time Time 
FIGURE 17. (a) Comparison of rotation rate of split vortices 4 about origin with the value.4, for co- 
rotating point vortices: -V-, nornialized half-separation distance = 4;  --- 0 --- 2 ,  4. . . .A,. ., 
$/$,. (b) Normalized maximum vorticity. 

The plot shows that as the split vortices move further away from each other, the 
velocities that they induce on each other are more like those of point vortices, i.e. J / J P  

tends to unity with time. Figure 17(b) shows the behaviour of the peak vorticity. It is 
located at the origin during the elongation phase. Since a fluid particle started at the 
origin remains there, the value of w,/p  at the origin must be nearly constant in this 
nearly homentropic flow. Hence increase of o, is associated with increase of p (see 
figure 16). In the drifting apart phase, the peak vorticity, located in the cores of the split 
vortices, decreases in time. The value of the minimum density in the core increases, 
however, suggesting that the vorticity peak and density minimum occur for different 
fluid particles. 

5 . 3 . 2 .  Evolution of Fourier modes 
Unlike the linear regime, the nonlinear behaviour of the flow is highly influenced by 

the local amplitude of the perturbations. This is expected to be strongest near x = 0.4 
where the eigenfunctions for two of the variables have their global maxima. Since the 
normal-mode assumption is no longer valid, different locations of the flow field may 
now behave differently. However, the frequencies and growth rates can still be analysed 
at different radial locations in the same manner as for the linear theory for purposes 
of comparison. Since the initial condition contains only an m = 2 mode, odd modes 
cannot be produced from nonlinear interaction, and their amplitudes in the numerical 
solution are found to be negligible compared to the even modes. 

The logs of the leading even-Fourier-mode amplitudes for v,  at x = 0.8 are shown 
in figure 18(a) (for normal modes, the growth rates would be given by the slopes). A 
weak m = 0 mode is also present as a result of the m = 2 mode self-interaction. The 
plot shows that the growth rates decrease gradually in the nonlinear regime until they 
approach saturation just before splitting occurs. After splitting, all the Fourier modes 
in the location of the former vortex core (0 < x 6 1.5) start to decay as the split vortices 
move away from the origin. 

The angular phase velocities -f , /m of the leading Fourier modes at x = 0.8 are 
plotted in figure 18 (b) (very similar results are obtained at the other locations). After 
a brief period of excitation, the m = 4 and 6 modes have the same angular phase 
velocity as the m = 2 mode, i.e. the waves do not disperse. On the other hand, the 
angular phase velocities of linear waves on a circular incompressible uniform-vorticity 
vortex are given by (m - l)/m, i.e. they do depend on m. In the present case, the waves 
do not show this behaviour because they are forced by the m = 2 mode. The rotation 
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FIGURE 18. (a) Natural log of Fourier mode amplitudes for m = 0,2,4,6,8 and (b) angular phase- 
velocities of Fourier modes m = 2,4,6, for u, at x = 0.8 : -, m = 2; ----, m = 4; ’. . . . . . . , m = 6 ;  
--- m = 8 ’ - . -  ,m=O.  

rate of the waves decreases slightly during the elongation stage. This is analogous to 
the fact that more elongated Kirchhoffs elliptic vortices (incompressible flow with 
constant-vorticity core) have smaller rotation rates according to w0 h / ( A  + l)’, where W ,  
is the uniform value of vorticity in the core and h is the aspect ratio (see Lamb 1932, 
$159). A sharper decrease in the rotation rate of the waves is observed subsequent to 
the split. 

5.3.3. Acoustic radiation 

given by 
The instantaneous acoustic power E, (per unit length) at a radial distance r ,  is 

where p” and C, are the perturbation pressure and radial velocity, respectively. The 
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FIGURE 19. (a) Comparison of normalized acoustic power at x = 10 between linear theory and Euler 
simulation: -v-, linear theory; - - -  0 ---, Euler; . . ., Euler/linear ratio. (b) Variation of 
normalized far-field acoustic power with vortex separation distance: V, x = 10; 0 ,  x = 15; -, 
slope = -6; ----, slope = -8. 

normalized acoustic power at x = 10 is compared with linear theory in figure 19(a). 
The nonlinear Euler simulation shows good agreement with linear theory in the initial 
small-amplitude phase as expected. As the nonlinearity becomes stronger, the acoustic 
power first increases with time, then decreases. The acoustic power reaches a maximum 
at about the time when the vortex starts to split. 

An analytic expression for the acoustic power of two corotating point vortices in an 
inviscid fluid at small Mach numbers is given in Muller & Obermeier (1967). Their 
analysis predicts that the acoustic power should be inversely proportional to the 
separation distance of the two vortices to the sixth power. The Mach number, illrot, 
based on the rotation speed of the vortices about each other and the ambient sound 
speed, is about 0.2 at the end of the simulation. For aeroacoustic theories to be valid, 
the compactness condition that the ratio of the acoustic wavelength to the half- 
separation distance of the vortices be very large must be satisfied. This ratio equals 15.7 
at the end of the simulation, which implies that the compactness condition may be only 
marginally satisfied. 

Figure 19(b) shows the log of the acoustic power at x = 10 against the log of the 
separation distance. In some cases there are two values of acoustic power for a given 
separation distance due to small oscillations of the location of the centres of the 
individual vortices from one grid point to the next. The approximate slope of the plot 
suggests an inverse eighth-power variation with separation distance. This result has to 
be interpreted with some caution since only a small range of separation distance on the 
log scale is available in the flow. The discrepancy with the theory for point vortices may 
be due to several sources. First, the acoustic relations 

pl = c2,pf, p p  = f-v, ?/Pm I (5.8a, b) 

at x = 10 are not satisfied exactly. Figure 20(a) shows that the perturbation pressure 
and perturbation density follow the small-disturbance isentropic relation throughout 
the simulation. However, figure 20(b) reveals that there is deviation of the perturbation 
pressure and radial-velocity relation from (5.8b) after t z 150. The second reason for 
the discrepancy is that the theory describes only the acoustic signal produced by the 
corotation of the point vortices. Since the vortices are of finite sizes in the present case, 
the unsteadiness of each individual core also contributes to the acoustic power. 
Because the separation distance between the cores is comparable to the core size, the 
characteristic frequencies for both forms of unsteadiness are also comparable. Hence, 

c,  
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FIGURE 20. (a) Normalized perturbation pressure and perturbation density relation, and (b) 
normalized perturbation pressure and radial velocity relation sampled at different times at x = 10: v, 
all t ;  -A-, t < 150; 0,  t > 150. 

it is difficult to separate the two contributions to the acoustic power. Another source 
of discrepancy may be that the acoustic signal is not captured accurately due to the 
relatively coarse resolution of the mesh in the far field. A study of many issues 
concerning the accurate computation of acoustic waves for a pair of corotating vortices 
was recently performed by Mitchell, Lele & Moin (1992). 

5.3.4. Behaviour of total mass, energy, .circulation and entropy 
Both the total mass and energy in the computational domain show a very small loss 

of less than 1 YO of the initial value, which is quite satisfactory considering the large 
number of time steps used (z 700000). The slight decrease in total mass is expected 
since the flow develops a small net outflow. The slight reduction in total energy can be 
accounted for by energy carried out with the small mass outflow and the escape of 
acoustic radiation. For both quantities, small numerical errors also contribute to the 
loss. A small increase of total circulation in the computational domain is observed due 
to production by the baroclinic term and contributions from the numerical boundary 
conditions at the far field. 

For an inviscid fluid in the absence of shocks, redistribution of entropy is allowed 
but the maximum should remain the same. The initial condition for the present 
numerical simulation is very slightly non-homentropic (less than z 0.1 % from a 
constant) because the perturbation eigenfunctions are only homentropic up to linear 
terms. The maximum value of entropy attained is about 50 % greater than the initial 
value and most of the entropy is generated during the presence of high gradient regions 
(at the unsplit vortex core and at the weak shocklets). Near the vortex centre, the core 
has become so elongated that the flow resembles a shear layer locally with gradients 
that are comparable to those found in the shocklets. Part of the excess entropy may be 
due to inherent dissipation in the numerical scheme. Although the maximum entropy 
has increased quite significantly, the total entropy of the entire flow field remains within 
less than 0.1 YO of the initial value. This suggests that the effect of the local numerically 
produced entropy on the global behaviour of the flow is small. The effect of the 
numerical scheme on entropy generation has been examined by Brentner (1990). It was 
found that typical values of added artificial dissipation have negligible effect on 
entropy generation but poor grid resolution can produce significant errors in entropy 
nroduction. 
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6. Summary and discussion 
We have studied the linear and nonlinear instabilities of a compressible two- 

dimensional vortex. The main results are as follows. 
(i) The linear instability is not peculiar to the previously studied case of uniform 

vorticity that jumps to zero at the core boundary. It is found that other smoother 
vorticity distributions are also unstable. 

(ii) The Gaussian vorticity profile is found to have only neutrally stable modes 
according to a normal-mode stability analysis. In addition, a study of the linear initial- 
value problem indicated no algebraically growing modes either. Kop’ev & Leont’ev 
(1988) found that any continuous axisymmetric vorticity distribution whose gradient 
does not change sign provides a variational maximum for the energy, and concluded 
that all such profiles should be acoustically unstable. A possible reason for our 
observation of neutral stability of the Gaussian profile is that modes are non-radiating. 
Indeed it is possible that the rn = 2 mode has zero frequency, i.e. it is steady (see figure 
11 a). Unsteady modes can also be non-radiating if the eigenfunctions decay sufficiently 
rapidly with distance from the origin. 

(iii) For a model entropy profile, positive average entropy gradient in r is 
destabilizing while the opposite is true for negative average entropy gradient. 

(iv) A wave rotating in the direction opposite to the vortex was found in the long- 
time solution of the linear initial-value problem for random initial conditions. The 
wave was observed for m = 3 for the cosine transition profile and the Gaussian profile. 
Its existence was confirmed by returning to the normal-mode analysis. The normal- 
mode analysis then also revealed other counter-rotating waves, which were not 
observed in the random initial-value problem, presumably because they decay faster. 
All such modes encountered were either decaying or neutral. 

(v) In the nonlinear development of an elliptic perturbation, the vortex elongates 
and shocklets are formed near the ends of the vortical core. After sufficient elongation, 
the vortex splits into two corotating vortices by a mechanism that we believe is inertial 
and the same as a Love (1893) instability of an incompressible Kirchhoff elliptic vortex. 
Each of the vortices has a density trough, while a region of high density is created about 
the origin. 

We wish to comment, in passing, on the possible relevance of the behaviour observed 
here and the appearance of secondary structures in the experiments of Dosanjh & 
Weeks (1965). In the experiments, a spiral vortex was generated by passing a shock 
wave over an airfoil. Subsequent to interaction with the reflected shock, the vortex was 
distorted into an elliptical shape and evolved in essentially still air. We estimate that 
M z 0.5 and the eddy turnover time as 100 ps ( = T ~ ) .  About 307, after the interaction, 
a secondary region of high density appears and subsequently grows in strength and size 
(splitting occurs at about 50 eddy turnover times in the numerical simulation). The 
primary vortex decays in strength (decreasing density deficit) and a secondary vortex 
appears which grows in strength (increasing density deficit). The primary and 
secondary vortices are unequal in size and the high-density region does not lie between 
them, whereas the split vortices in the present numerical simulation are of equal size 
and strength with the high-density region located in between them. We believe that the 
above differences between the experiments and the numerical simulation are due to 
differences in initial condition, though it is possible that the splitting mechanisms are 
related. 

In the final stage of the nonlinear development, the vortices drift apart. This 
phenomenon was predicted by Klyatskiy (1966) and is explained as follows. For 



206 W. M.  Chan, K .  Sharifand T. H.  Pulliam 

incompressible flow, although the kinetic energy of the unbounded vortex system is 
infinite, one can define a finite quantity, the ‘excess energy’, which is the difference 
between the kinetic energy of a potential vortex with the same total vorticity, and the 
kinetic energy of the system (Batchelor 1967,97.3). For two corotating incompressible 
point vortices, the ‘excess energy’ is proportional to -log (ds), i.e. two vortices that are 
farther apart have a lower ‘excess energy’. As acoustic energy is radiated out with 
slight compressibility, the system of corotating vortices must move to a lower energy 
state. A process which allows this is the drifting apart of the vortices. It would be worth 
seeking an argument for the separation based on the local evolution of the flow 
variables. 

The authors are grateful to Dr Sanjiva Lele for some very helpful discussions, and 
to a referee for useful comments about relevant work in the geophysical literature. 
Funding for this work was provided by a NASA/Stanford consortium agreement 
(Contract number NCA2-36 1). Computer resources were supplied by NASA Ames 
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Appendix. Modification and implementation of Thompson’s non-reflective 
boundary condition at the far-field boundary 

In the numerical simulation of the linear initial-value problem and the nonlinear 
problem, the non-reflective boundary condition of Thompson (1987) is used to 
promote outward propagation of acoustic waves at the far-field boundary. This is a 
valid scheme for this problem since variations tangential to the boundary are small. 
The scheme used to advance the flow in time in the interior is also used at the boundary. 
Derivatives tangential to the boundary (&derivatives) are computed in the same 
manner as for the interior while derivatives normal to the boundary (r-derivatives) are 
treated in a special way. The procedure used for the linear initial-value problem is a 
direct application of Thompson’s scheme and the reader is referred to Chan (1990) for 
the details. The procedure used for the nonlinear problem is described below. 

Let U = ~ ,u , . ,us ,pIT  be the vector of primitive variables and let terms in the 
conservative and primitive formulations be related by 

with Q and G, as defined in (5.1 a, b). Defining A = P ’ R ,  the radial flux derivative in 
(5.1a) can be written as 

where the columns of 7-‘ are the right eigenvectors of A, and A is the diagonal matrix 
of eigenvalues hi of A. Let M denote the factor in parentheses and let I:, k = 1 , .  . . ,4 
denote the rows of 7. Then the kth element of M is 

Thompson’s procedure requires setting MI, = 0 for A, < 0, which suppresses incoming 
waves for a constant-coefficient, one-dimensional linear system. After expanding (A 3), 
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replacing derivatives by backward differences and applying Thompson’s procedure, 
one obtains 

(v,-c)[i$’p-pc8~v,] for (v,-c) > 0, 
MI= {o otherwise, 

M ,  = { y v o  
for v, > 0, 
otherwise, 

M ,  = { ;[EP-c2ZP1 for v, > 0, 
otherwise, 

(v, + c )  [ i$p +pee v,] for (v, + c) > 0, 
otherwise. 

For radial momentum balance, we consider the second element of the radial flux 
derivative, which can be expressed as 

For the basic-state, v, = 0 and hence M ,  = 0 and M4 = @psuch that (aG,/ar), = i @ p  
instead of the value dp/dr needed to balance p P i / r  in S for satisfaction of the radial 
momentum equation (K. W. Thompson, personal communication). This error will 
propagate inwards and contaminate the interior solution, resulting in the generation of 
a non-zero radial-velocity component. By adding appropriate terms for the ‘incoming ’ 
parts of M ,  and M4, radial-momentum balance for the basic state is restored (K. W. 
Thompson, personal communication). However, the resulting radial-momentum 
equation is still not satisfied exactly due to truncation errors in computing @ p  by finite 
differences. This error is eliminated by adding two terms to the outgoing parts of M ,  
and M4. Since these terms sum to zero analytically, the conceptual basis of Thompson’s 
scheme is not altered. The re-defined M ,  and M4 are as follows: 

- c)  @Pi/r + t$(p -p) - pc@ v,] for (v, - c) > 0, 
(v, - c) p V i / r  o therwise, 
(v, + c) F P i / r  + g ( p  -p) +pee u,] for (v, + c) > 0, 

M4= { (v, + c) pV,2/r otherwise. 

MI = {“ ] (A61 

With (A 6) and M ,  and M3 as defined in (A 4), the steady basic-state is maintained by 
the numerical simulations (up to round-off error). Also, since we saw no evidence of 
reflections from the far-field boundary, we concluded that the character of Thompson’s 
scheme does not seem to be affected by the modifications needed to maintain the basic 
state. However, users of Thompson’s scheme must take care in checking if any 
correction needs to be applied to the scheme for use in a flow with a non-uniform basic 
state. 
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